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In  this paper we consider the head-on collision of two equal solitary waves this being 
equivalent, in the absence of viscosity to the reflection of one solitary wave by a 
vertical wall. The perturbation expansion of the Euler equations, which lead to the 
Boussinesq equation at  lowest order, is recast to obtain two weakly coupled KdV 
equations. We show analytically that the amplitude of the solitary wave after 
reflection is reduced. This change in amplitude is shown to be fifth order in e, the 
amplitude of the wave. It is also shown that the experimentally observed transient 
loss of amplitude can be explained by the presence of the third-order dispersive 
tail. 

1. Introduction 
The earliest analytic approximations for the solitary wave were given by 

Boussinesq (1872) and Korteweg & de Vries (1895), who both derived equations for 
the propagation of water waves of small amplitude and long wavelength. The 
equation derived by Korteweg & de Vries, now called the KdV equation, was for 
unidirectional propagation of water waves, while the earlier work of Boussinesq 
derived an equation which allows waves that propagate in opposite directions. 
Byatt-Smith (197 1) showed that the Boussinesq equation admitted solutions that 
consisted of two solitary waves travelling in opposite directions, with each solitary 
wave satisfying an appropriate KdV equation. He also showed that the interaction 
term was of smaller order than the waves themselves but was correctly predicted by 
the Boussinesq equation. Miles (1977) extended this result to the interaction of 
unsteady waves travelling in opposite directions and decomposed the interaction 
term into a transient term and a phase shift. 

This pattern repeats itself a t  higher orders so that the nth-order travelling wave 
solution completely determines the (n+ 1)th-order interaction term. Su & Mirie 
(1980,1982) completed this process to third order where it becomes apparent that  the 
expansion produced is not uniformly valid for all times. The reason for this 
breakdown is that the method allows only for uniformly travelling waves and 
interaction terms, and does not allow for a distortion of the travelling waves apart 
from a possible phase shift. Su & Mirie (1980) demonstrated that a t  third order a 
dispersive tail must appear and found no change of amplitude. Their numerical 
computations (1982) confirmed their theoretical prediction of the dispersive tail and 
found an amplitude-dependent change in the amplitude of the waves. This change 
appeared to be of smaller order than the cube of the original amplitude of the wave 
but they were unable to determine its exact order of magnitude. 

Fenton & Rienecker (1982) provide a Fourier-series method for solving the full 
Euler equations. Their method assumes periodic waves and is applicable to waves 
travelling in the same or opposite directions. They treat ' solitary ' waves by looking 
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a t  waves of long but finite wavelength. The present author believes that the 
restriction of periodicity limits the applications of that paper. A dispersive tail is 
essentially expressed as an integral over a continuous spectrum while the restriction 
of periodicity limits the form of solution to a sum over a discrete spectrum. This may 
account for the fact that  their conclusions differ from those of Su & Mirie (1980, 
1982). Fenton & Rienecker (1982) find that the wave amplitude alters at the third 
order although no dispersive tail is produced. However this result is incompatible 
with their claim that no energy is lost at least in the true solitary wave case. The 
reason for this apparent inconsistency is that they claim that after reflection the 
‘solitary waves ’ are smaller but faster. This may apply to periodically interacting 
waves but cannot be the case for solitary waves when they have reached their 
permanent form after interaction. This is because the wave speed is a monotonic 
increasing function of amplitude except for waves very close to the maximum. (See 
for example Byatt-Smith & Longuet-Higgins 1976 or Longuet-Higgins & Fenton 
1974). 

There are experimental observations that show that a t  least for small times after 
interaction the waves are smaller but faster (see Maxworthy 1976 and Renouard, 
Seabra-Santos & Temperville 1985). However, the later experiments show that this 
loss is only transient and that as the solitary wave progresses after reflection the 
‘loss’ of amplitude and the original shape is recovered. Renouard et al. also include 
the effects of viscous damping on the amplitude of the solitary wave and conclude 
‘that the amplitude of the reflected solitary wave is the amplitude that the solitary 
wave would have if the wall did not exist and if viscous damping were acting alone ’. 
Presumably this means that any loss of amplitude due to reflection was too small to 
be accurately measured. Thus the observed transient loss of amplitude must be due 
to the superposition of the reflected wave and the dispersive tail. For small times 
after reflection the dispersive tail must then appear as a wave of depression a t  least 
in the vicinity of the maximum elevation of the solitary wave. 

In this paper we show that the loss of amplitude of a reflected solitary wave is of 
fifth order. We shall consider the case of two equal waves propagating in opposite 
directions. Starting from the Euler equations for fluid flow we derive interaction 
equations which are perturbations of the KdV equations. From these equations we 
analyse the formation of the dispersive tail and the subsequent loss of amplitude of 
the reflected solitary wave. 

2. Basic equations 
We consider unsteady, two-dimensional irrotational motion of a fluid. The motion 

is assumed to be such that all disturbances tend to zero a t  infinity where the depth, 
h. is uniform. It will be convenient to choose units so that 

h = g  = 1, (2.1) 

where g is the acceleration due to gravity. 
Let (x,y) be horizontal and vertical coordinates, t the time, 7 the free-surface 

displacement and p) the velocity potential. The boundary-value problem is then 
described by 

PSS+Q)Y1/ = 0 (0 < Y < 1 + 7 ) >  (2.2) 

v y  = 0  ( y  = O) ,  (2.3) 

7 t + ( P L G r Z - C P y  = 0 (Y = l+rL 12-4) 
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and T+QA++;+h;  = 0. (2.5) 

solution of the form 00 

Following Miles (1977), Su & Mirie (1980) or Byatt-Smith (1987a, b )  we look for a 

(2.6) 

In  terms of 7 and W ( x ,  t )  = a@/ax, (2.4) and the x-derivative of (2.5) can be written 

@(x, t )  y2" 
(2n)! ' 

(Ax, y, t )  = x ( - wn 
0 

where U = a/ax. 

as 

and 

= 0, (2.8) 

where a, = a/at, 
By adding and subtracting these two equations they may be rewritten as 

(a ,&D)(WfT)+DF, = 0, (2.9) 

where 

3. Perturbation equations for two equal solitary waves travelling in opposite 
directions 

We consider two equal solitary waves initially far apart, of small but finite 
amplitude travelling towards each other. Provided the symmetry is maintained this 
corresponds, a t  least for inviscid flow, to the situation where a single solitary wave 
is travelling towards, and ultimately reflected by a vertical wall. This is the only case 
we discuss here. However, there is also the possibility that symmetry-breaking 
perturbations are unstable which, if present, would destroy the equivalence of the 
two problems. These have been shown to occur in periodic gravity waves by, for 
example, Saffman (1985), Zufiria & Saffman (1986) and Tanaka (1983,1985) and also 
in solitary waves by Tanaka (1986) and Tanaka et al. (1987). However, in all of these 
cases the a,mplitude has to  be large, often quite close to the maximum, before the 
symmetry-br,eaking perturbations become unstable. 

In  the absence of any interaction terms each solitary wave will be a function o f a  
single phase variable and we introduce new coordinates 

c1 = E+Ic(X-cCt) ,  c2 = E + k ( X + C t ) ,  (3.1) 

where 0 < E 3 1 is a small dimensionless parameter representing the order of 
magnitude of the wave amplitude, Ic is the wavenumber and c the wave speed. 

We introduce the notation 
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and the change of dependent variables 

[X = LF-l 2 ( W + y ) ,  p = $F-,(y-W). 

4 ~ 6  a, [X + (a, +a,) F+ = 0,  

and 4cea,p+ (a,+a,)F- = 0, 

I n  terms of these variables (2.9) becomes 

where now 

F+ - = T2(C-1)€ +y(a-p)2f€Z([X2-p2) 

(3.3) 

(3.4) 

(3 .5)  

The procedure adopted by X u  & Mirie is to expand the parameter c and the 
variables [X and /3 as a power series in F .  They also allow for a phase shift by making 
an additional expansion of the independent variables. However, their expansion is 
still not uniformly valid and breaks down as t + + 00, that is after thc interaction has 
taken place. The result of this breakdown is that the travelling wave part of the 
solution, after interaction, no longer satisfies the equation for a wave propagating 
without change of speed and shape. The reason for the breakdown is that during and 
after interaction the travelling wave part of the solution is distorted on a timescale 
that is large compared with the timescale, t ,  based on the wave speed. Su & Mirie 
tacitly use this argument and set up an initial-value problem for the distorted 
travelling wave after interaction. However, there is no real origin of time for this 
initial-value problem and their s o h  tion for the dispersive tail produced by the 
interaction is valid only for large time. 

We propose to model, more correctly, this interaction by deriving an equation for 
the unsteady travelling wave part of the solution. This will take the form of an 
approximate KdV equation which will be analysed by the method of inverse 
scattering. We do not propose to rederive the full third-order solution which has been 
given for example by Chappelear (1962), Grimshaw (1971), Fenton (1972) and Su & 
Mirie (1980). Instead we propose to pick out the term that gives rise to the distortion 
of the travelling wave and treat this term by itself. Thus for example the terms of 

(3.7) 
order 6 in (3.4) and (3.5) give 

4ca2[X = 4ca,p = 0, 

provided c = 1 +O(F).  (3.8) 

4a2[X+F(a~~+3[Xa,a-a,a) = 6[(alol)p+a2([Xp)+a,(-+p2+2a~p)1, (3.9) 

If we use a,a = 0 1 6 )  the terms of order e2 in (3.4) give 

provided c, = +, k2 = 3. (3.10) 

The latter conditions (3.10) are required to eliminate the secular terms that arise 
in the expansion (see Su & Mirie (1980) for further details). 
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If we now look for a solution 

a = a 0 ( 5 1 + 4 ( 5 , ) )  + 6%(51> 5 2 L  

ab" + 3a, a;, = 0, 

Then ao(xl)  satisfies the ordinary differential equation 

which has the solution a. = sech, (ix,). 

(3.11) 

(3.12) 

(3.13) 

The solution for Po is obtained similarly and then (3.9) can be satisfied by choosing 

81 = p o ( 5 0 )  d50, (3.14) 

(3.15) 

O1 and a, as 

a1 = a ~ o P o - i P ; + % + ~ 1 ( 5 1 )  
= a.0 P o  - $3; + $0 + Fl(51) > 

so that x1 = 5 1 + E p o ~ 5 0 ) d 5 0 .  (3.16) 

The alternative is to use (3.11) and (3.16) to show, without solving (3.9), that there 
exists a transformation from (a ,  5,) to (&, x,) so that (3.9) is transformed into 

(3.17) 

We do not wish to find this transformation but use its existence to justify studying 

At the next order of E ,  retaining only the terms that lead to singular behaviour, we 

(3.18) 

the solution of (3.9) when the right-hand side is put equal to zero. 

obtain 
4 a, a + E ( a ;  a + 301 a, a-  a, a )  = geza a, .p. 

Similarly from ( 3 . 5 )  we obtain 

4 a, p+qa;p+ 3pa, p- a, p) = geya,pa. (3.19) 

We transform (3.18) and (3.19) to approximate KdV equations by writing 

a = -2U, p = -2v,  ri = $.ti, i = 1,2 .  (3.20) 

In terms of these variables (3.18) and (3.19) are 

av 
37, 

and 
- = 3v a, u - $2'; v + i 3, v + 1 8 ~  a, vu X,(V) + t D,(v) + EX:(??, u). ( 3 . 2 2 )  

here D, = a/a[,, x, = - + D ; + ~ D , + D , ~ ,  (3.23) 

represent the first two operators in the hierarchy of KdV flows (see McKean & Van 
Morbeke 1975 for example). X, is defined similarly in terms ofc  with D, = a/a[,. This 
notation has been chosen to  coincide with that of Byatt-Smith (1987a, h )  who 
studied the interaction of two solitary waves moving in the same direction. 

li FT,Y 19i 



508 J .  G. B. Byatt-Smith 

4. The interaction of two solitary waves 
Equations (3.21) and (3.22) are both perturbations of the KdV equation which are 

connected via the perturbation terms X: and Xi. These equations may be solved 
using the method of perturbed inverse scattering developed by Karpman & Maslov 
(1977 a+), Keener and McLaughlin (1977) and Kaup and Newel1 (1978) and used by 
Byatt-Smith (1987 a ,  b) .  In  certain circumstances they may be solved by the method 
of Su & Mirie (1980) who follow the suggestion of Jeffrey & Kakutani (1970). 

We start by deriving the general solitary wave solution of the unperturbed 
equation 

(4.1) ul2 = Xl(u) ++D,(u). 

This by hypothesis is a function of the single variable 

8 = K t l  - $ ( K 3  - K )  72, (4.2) 

and takes the form Go(@) = -$K." sech2$9. (4.3) 

In  our case we have defined coordinates in which the unperturbed wave before 
interaction is stationary so that K = 1. We denote this particular solution by u0 so 
that 

uo(t l )  = -$ sech2&. (4.4) 

u = uO(~l)+u1(~1>72)> 14.5) 

The method of Xu & Mirie is to write u as 

with a similar expansion for v, and solve the linearized equation 

where vo = - f sech2 it2. 
The solution of (4.6) was first outlined by Jeffrey & Kakutani (1970) and is 

obtained by variation of parameters from the solution U p ( [ , ,  72) of the homogeneous 
equation. This is given by 

Up( t&, 72) = Fl ( tl, k )  e-3p72fit51, (4.7) 

where p = - ( k + k 3 ) ,  (4.8) 

and Fl(t,, k )  = ik(k2- 1 ) - 4 i k u o - 2 ~ l u o + 2 k 2 ~ l u O / ~ 0 .  (4.9) 

The solution of (4.6) can then be expressed as 

ul(tl, = J-: r a A ( k ,  T ~ ) F ~ ( & ,  k )  e-~ip(rz-70)+ilcf1d70dk, (4.10) 

where A ( k ,  7J Fl(tl, k )  eik51 dk = 18m0 a, uo vo. s_T, (4.11) 

The bottom limit of the 70 integration is determined from the condition that before 
interaction ( t  + - co) u1 is zero. 

Then we may write 
A(k ,  7 2 )  = B(k)  .vo(272/.), (4.12) 

B(k)  ciktl dk = 18u0 a, uo. (4.13) 
d3 a1uo d2 d where 

(4u0+i)--2a 
dtl 
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Su & Mirie (1980) make the statement 'Since Fl(tl, k )  is bounded for all t1, to have 
a bounded solution Up([,, 7 2 )  in 5, we must take k real which in turn requires a real 
p .  Therefore the general solution u1 (4.10) can be expressed as an integral over all real 
k.' This is not true under all circumstances although it does apply in their solution 
where the perturbation produces only a dispersive tail and a phase shift. Such 
perturbations must satisfy the requirement that 

(4.14) 

For arbitrary perturbations Xi expressible in the form Xi = U,(t,) Vo([,) and also 
satisfying (4.14), the solution of (4.13) can be written as 

where is a constant chosen so that the expression converges as 5, + + 00. 
However if (4.14) is not satisfied then the rate of change of amplitude is given by 

the equation 

(4.16) 

where K is defined via (4.3). This expression has been derived by Byatt-Smith 
(1987a, b) .  

= 0 we 
obtain 

B ( k )  eikhdk = 2-u0(t1), (4.17) 

so that B(k) = 2 6 ( k ) - ~ ~ , ( k ) ,  (4.18) 

For the case Xi = a,uowo it is easily verified that (4.14) holds and with 

00 

(4.19) 
k 

e-"tIu0([,) dt, = --. 
2n 

where 

Hence 

~ 1 ( & , 7 2 )  = E v ( 2 7 , / ~ )  (26(k) -aa(k))Fl(tl, k) e-~ip(72-70)+ik61 drO dk 

= - 2 2  a, uo rm W O ( t 0 )  dto 

J:m 

(4.20) 
-$e2 JYrn 

If t2+ 03 with 7 ,  fixed then (see (6.1)-(6.3)) 

v , ( ~ ~ )  ao(k )Fl (&,  k )  e-iifi6(E2-@+iktI dto dk. 

u1(tl, T ~ )  = 4e2 a, uo + c2 ao(k) PI(&, k) e-iipT2+ikt1 dk .  (4.21) 

This result is identical to that obtained by Su & Mirie, which is thus only valid in 
this limit. 

The first term in (4.20) can be interpreted as a phase shift using the same 
arguments as in 93. Alternatively this phase shift can be eliminated by adding to the 
right-hand side of (4.6) a term equal to 4a,uovo. The phase shift must be properly 
interpreted as such to proceed with the next approximation and, following the 

17-2 
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philosophy of $3, we take the latter course of action. This results in a revised first 
approximation u1 given by 

vo(<,) an(k)PI(tl, k)e-i1”f(c2-t0)+ikt1 dt,dk. (4.22) 

This term now represents the dispersive tail and is clearly of order 2 and for 
convenience we write d, = c-’ul. However, i t  should be noted that ti, = dl(tl, rz ,  c ) ,  
which cannot be uniformly expanded as a power series in E without the formal 
introduction of the second timescale t2. However, we do note that from (4.21) that 
in the limit tZ+ 00 with r2 fixed d, is independent of c .  

The advantage of this method of solution is that  (4.22) is obtained readily without 
the scattering-inverse scatt,ering recipe. The difficulties that  can arise are easily 
understood by comparing the method with the perturbed inverse scattering method. 
This can easily be achieved by first defining the function f as 

SI: ul&, 72) = -;c2 

f ( t l ,  k )  = ~ik:-a,~,(t,)/~,(t,))eg~~ES1. 
This function can easily be shown to satisfy 

(4.23) 

(4.24) 

With k real f represents the eigenfunction of the continuous spectrum of the 

operator & = - D f +  U n  (4.25) 

with f satisfying Q ( f )  = hf. (4.26) 

For the given value uo(t,) there is also one additional discrete eigenvalue h = - 1 
and f(&, i) also represents the eigenfunction for this eigenvalue. 

The discrete eigenvalue and the quantity E 2  defined by 

m 

c“2 s_, lf2(t1> ill dtl = 1 

form part of the spectral data and their variation in the perturbed system allows for 
a uniformly valid approximation with a change of amplitude and phase shift. 
Equation (4.16) can then be identified with that obtained by Byatt-Smith (1987a) by 
noting the relation f 2(t1, i) = -2un(t1). Knowledge of the change of the remaining 
parts of the spectral data is required for the computation of the altered solitary wave 
and the dispersive tail that is produced by the perturbation. (Again, see Karpman & 
Maslov 1977a-c; Keener & McLaughlin 1977; Kaup & Newell 1978; Byatt-Smith 
1987 a, b . )  This backward or inverse scattering is achieved via the Gelfand-Levitan 
integral equation (see Gelfand & Levitan 1951 or Agranovitch & Marchenko 1963). 
Our main aim is to determine the change of amplitude of the solitary waves during 
interaction. In  order to do this we need to proceed to the next approximation. 
However, it only requires the appropriate form of (4.16) and i t  is unnecessary to 
determine the correction to the dispersivc tail. 

5. Calculation of the change of amplitude 
To discuss the change of amplitude we first need to look a t  the higher-order terms 

in the expansion of (3.5) and (3.6) which give rise to further terms on the right-hand 
side of (3.21) and (3.22). Again we assume that these terms fall into two categories. 
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In the first category there are those that arise naturally when a single wave is 
expanded to high orders and also higher-order interaction terms corresponding to the 
expansion of a, (see (3.11)). These represent the uniformly valid terms that arise in the 
expansion of the wave interaction problem and we assume that there exists a similar 
transformation to new variables which remove these terms (see (3.17)). The 
remaining terms are the ones that produce distortion of the wave profile but do not 
lead, to lowest order, to a change of amplitude. The effect of these terms is to modify 
the right-hand side of (4.6). When this is solved by the method of $4, the linearized 
solution will have a higher-order correction to the dispersive tail but no change in 
amplitude. Thus the change of amplitude first appears when (4.6) is solved correct to 
second order as outlined below. The leading term in this sccond-order solution will 
clearly come from the product terms involving S, and d, arising from the order-e 
terms in (3.21) and (3.22) and not from the higher-order terms. Thus we now wish to 
solve the equations 

au 
- = 3u a, u-+a;u+ ;al u+ 6(18u+4) a, uv, (5.1) 
a 7 2  

av 
and - _  ~ - 3 a, .-fa; + ;a2 + e( i sv  + 4) a, vu, (5.2) 

071 

correct to second order. 
The first approximation 

where 

and 

The first approximation 

to (5.1) derived in $4 is 

= uo(t1) + E2S1(t1> 7 2 ,  e ) ,  
uo = - f sech, it,, 

w0([,) t ~ ~ ( k ) F , ( [ ~ ,  k) e-iip(fz-cO)+ikcl dC0 dk. (5.5) 

to (5.2) is obtained in a similar fashion and 

Again the upper limit of the to integration is determined by the condition that 

We now proceed to the next approximation by writing 
v1 is zero before interaction. 

with a similar expansion for v. 

equation 
Introducing this expansion into (5.1) and linearizing with respect to S, yields the 

% = 3 a,(c2uo) -+a: 4, + f a l  S, +e-l{(isuo +4) a, uocl +{a,(18u0 +4)  a,} do> + 3 a,(a;). 
a 7 2  

( 5 3 )  

The last term gives an order-e term to C2 so that from the analogue of (4.16) the 
change of amplitude is given, to leading order, by 

m 

= ic3 l-, {uo(18uo +4) a, u0C1 - (18u0+4) a, uOC, wo} dt,. (5.9) 
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in K as (see the Appendix) 
Following the arguments of Byatt-Smith (1987 a ,  b )  we calculate the total change 

5e4 
[ K ]  = *dT2 = :E -dcz = - - + q E 5 ) ,  42 

-m d72 Sm -‘a d72 dK 
(5.10) 

Using the definition of the individual waves (3 .3)  and the change of variable (3.20) 
the unscaled amplitude, a ,  of each wave is given by 

a = S K ~ ,  

[a]  = 2 e [ ~ ]  = - - + 0 ( e 6 ) .  (5.11) 

This calculation is consistent with the idea that the change in amplitude is due to 
the production of a dispersive tail. To leading order the energy of a solitary wave 
is 

E ,  = l-, 1;12 dx = J-m 4 e 2 4  d d c  = const x 4 

52 
21 

so that 

m ‘a 

= E ,  at, (5.12) 

since a is of order e. Thus a change of amplitude results in a corresponding change 
in E,  given by 

(5.13) [E,] = az[a]. 

On the assumption that the solitary wave and the dispersive tail are well separated 

3E0 1 

the energy in the dispersive tail is 

(5.14) 
11 11 E,  = l-: 4 ( ~ ~ 6 , ) ~  e-fdt = const x €5 = E ,  aT. 

Thus (5.15) 

This simple energy balance can also be applied in the case of two solitary waves 
travelling in the same direction. This shows that the net energy in the two solitary 
waves after interaction is unaltered to leading order despite the alteration in 
amplitude of the two waves. This result was obtained by Byatt-Smith (19873), who 
calculated these changes of amplitude. However, his remarks a t  the end of $4 of his 
paper, about the order of magnitude of each dispersive tail, as a consequence of this 
energy conservation, prove to be incorrect. 

If the unscaled amplitudes of the two waves before interaction are a ,  and a2 then 
the corresponding energy of each wave is given by (5.12), namely 

E,, = E,af ,  E,, = E,ai. (5.16) 

Thus the change in the total energy of the two waves only is 

[El, + E2,I = ;Eo(ab , l+  a5b21). (5.17) 

If E is the order of magnitude of the amplitude of the waves then Byatt-Smith 
(1987b) proves that the change of amplitude of each wave is of order 2 while the 
quantity ai +ai  is conserved to leading order so that 

[E,,+E,,] = o(eg). (5.18) 
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This can be seen to be consistent with the production of dispersive tails whose 
order of magnitude is e2 and not e3 as Byatt-Smith (1987 b )  suggests. If we assume 
that the order of magnitude of the dispersive tails is e2 then following the argument 

(5.19) 
used to obtain (5.14) we obtain 

where E,  is the combined energy in the dispersive tails. Energy conservation then 

E,  = const x 8, 

shows that 
(5.20) 

which is in agreement with (5.18). 

6. The transient change in amplitude during and after reflection 
The experimental measurements of Maxworthy (1976) and Renouard et al. (1985) 

both show that immediately after reflection there is a transient loss of amplitude in 
the reflected wave. The latter experiments also show that this loss is recovered after 
a sufficient time has elapsed. We now show that this observation can be explained by 
the presence of the dispersive tail. This dispersive tail is usually thought of as a train 
of waves trailing behind the solitary wave. The amplitude of the train of waves 
decreases exponentially with distance, that is as t1 + - 00, but because of dispersion 
decreases algebraically with time, that is as r2 +- co . However, in addition to the train 
of waves there is also a wave of depression which occurs between the leading wave 
of the dispersive tail and the solitary wave. The amplitude of this wave decreases 
exponentially with time but only on the time-scale r2. Thus there is a slow decrease 
of amplitude of the wave of depression. 

From (5.5) the scaled third-order dispersive tail, Gl, is given by 

After the reflection the leading contribution is obtained by letting t2+ 00 with 

(6.2) 

r2 fixed SO that 

~ , ( k )  F,(t,, k )  e-~'~'~+"~1 dk. 

Since u,(t,) is exponentially small as to+ CO, and a0(k) is ex onentially small as P 
k + co ~ this expression is unchanged to order e if we replace e-z1@"Ca by 1. Thus 

m 

G1(t,, 7J = l-, ~ , ( k )  Fl( t , ,  k )  eii(k+lc3)r2+ilc51dk+ O ( E ) .  (6.3) 

Su & Mirie expand this integral as r2 + co using the method of steepest descents to 
obtain 

+ k o ( k t -  1 -4uo(f,)) sin (72k03-~x) , (6.4) 

where 3k; = - (2t,/r2 + I ) .  
This is of course only valid if k ,  is real and not small ; this requires tl to be less than 

-$.,. As 12: passes through zero the two saddle points, at f k,, of the steepest descent 
integral coalesce and move up the imaginary axis. This changes the asymptotic 

1 
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FIGU~ZE 1 .  The transient loss of amplitude defined by (6.11) with the factor t3 being omitted 

Time 

behaviour of the integral from oscillatory to  exponentially damped behaviour. Thus 
for 6, > -+r, 

where k ,  = lkol = (2t1/7,+ 1)i/d:3. 

aO(ikl)  = -k l  cosecnkl < 0 From (4.19) we have 

(6.6) 

(6.7) 

since k ,  < 1 ,  at  least for tl < 7,. Hence 5, is positive, corresponding to a wave of 
negative depression provided 

k: + k, - 2kl sech2 itl - tanh $6, (sech2 +El - 2k:)  < 0. 

(3 tanh2it ,-  1 ) (2+ 4 3  tanhit ,)  < 0. 

-2 tanh-’(1/2/3) = - 1.317 < & < 1.317 = 2 tanh-l(1/43). 

(6.8) 

(6.9) 

(6.10) 

In the limit as 7 2 +  03 this becomes 

This inequality is satisfied only for tl in the range 

Both asymptot.ic expansions (6.4) and (6.5) are invalid as tl+-$2. To obtain a 
uniformly valid expansion we would need to express both expansions in terms of Airy 
functions using the method of two nearly coincident saddle points (see for example 
Bleisttxin & Handelsman 1975, chapter 9.2). 

The transient loss of amplitude, 8 4 7 , )  is given by the expression 

Sa(7,) = e-ea(0,  72) 

= 2e34,(0: 72) 

= 2 ~ 3 1 : ~  ao(k)  i(k+kS) efi(k+k3)7rldk 

= 4 . 5 3 ~ 0 m k 2 ( l + k 2 )  cosech(nk) ~ i n $ ( k + k ~ ) ~ ~ d k .  (6.11) 
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FIGURE 2 ( a i ) .  The furmation of the dispersive tail S,([,, T ~ )  given by (6.3) for 72 = 0-8. Also 
shown is the solitary wave profile sech2 (MI).  
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FIGURE 3. The superposition of figure 2 ( a i ) .  

Using the expansion of (6.5) we have 

Sa(r,) - $e3((2~)i~,f3-f cosec ( ~ / 1 / 3 ) e - ~ 2 ’ ( ~ V ~ )  as r2 --f co (6.12) 

This establishes the result that the effect of the dispersive tail is to produce an 
apparent third-order change in the amplitude after reflection which decays only on 
the slow timescale T ~ .  The transient loss given by (6.11) is given in figure 1, the factor 
e3 being omitted. It should, however, be remembered that (6.11) is only valid as 
5, --f co with r2 fixed. 

The formation of the dispersive tail is shown in the sequence of figure 2(a-i) for 
values of r2 = 0-8 which are superposed in figure 3. This latter figure clearly shows 
that the peak of the ‘initial’ disturbance decreases so that it is the second peak of 
figure 2 ( b )  (72 = 1) which eventually becomes the leading wave of the dispersive tail. 
The first peak is produced in the exponentially decreasing portion of the dispersive 
tail and is due to the presence of the two zeros of the multiple of the exponential 
described by (6.8) and (6.9). Another observation worth noting is that when the 
solitary wave and dispersive wave are superposed the point of maximum elevation 
of the combined wave clearly occurs in the range & < 0 although it increases to zero 
as 72 + co. Thus any measurement of velocity using the combined wave will appear 
to be greater than thc velocity of the solitary wave itself. 

Appendix 
I n  this Appendix we prove that to leading order 

From the definition of dK/dr2 (5.9) we define two integrals 

and 
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Using (5.6) we may write I, as 

m m m w  

I ~ o ( 5 1 )  (9u0(5,) +21 a, ~ o ( 5 1 )  uO(tl) @o(k)z(5z, k )  
I1 = s-, s, s, s,,=,, 

x e-iipC(tl-tO)+iLcp} dl, dk dt, dt,. ( A  4) 
Now under the transformation 

( 5 o , k , l ~ , t ~ ) + - ( 5 0 , k , 5 1 , 5 ~ ) ,  (A 5) 

the integrand cemains unaltered and the only limits that are changed are in the 5, 
integration, which becomes an integral from - 00 to l,. Adding this form of I ,  to 
(A 4) gives the result 

I1 = 1, Irnm slb; s': 1 d50 dk d51 d5,> (A 6) 

where the integrand is the same as that of (A4).  We now use the fact that the 
integrand is exponentially small as $ + 00, to + 00 or k + co. Hence I1 is unchanged to 
order .c if we replace the factor e-T1p(cl-ta) by 1 .  Then 1, may be expressed as the 
product of three integrals, J,, J ,  and J,, where 

and 

Since J ,  = 0 we obtain the result 

I, = 0 to O(€). (A 10) 

If this process is repeated on the integral I, we obtain 

where 

= -a; 71,0 - a, -4U0 a, - 2U0 a, U ,  - 2 a; Uo a, Uo/U,. 

a; uo = 6u0 a, uo +a, uo, a; U o  = 3 4  + un. 

(A 14) 

(A 15) 

The definition of uo shows that 
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so that 
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1 "  
(4-9 sech' (i&))z sech2 (at,) tanh2 (it,) dt, - 

- -s J-" 
(A 17) 

1 "  
(4 - 9 sech2 x ) ~  sech2 z( 1 - sech2 z) dz. - 

- -a I-" 
The integrals S,, defined by 

S ,  = 1;" sech2% xdx, n 2 1, (A 18) 

are easily determined by the recurrence relation 

2(n- 1) s, = ~ Sn-1 ,  2n- 1 n > 2 with S,  = 2, 

so that J 5  = -20/21. (A 20) 
Using the above results in the definition of dK/dr2 (5.9) we obtain 
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